Разложение булевой функции по переменным. Разложение булевой функции по переменным Теорема о разложении функции по переменной

Разложение булевых функций по переменным.

Пусть G – параметр, равный 0 или 1. Введем обозначение:

Проверкой легко установить, что x G = 1, тогда и только тогда, когда x = G. Отсюда следует, конъюнкция равна 1 (здесь G равен 0 или 1) тогда и только тогда, когда . К примеру, конъюнкция (в которой G 2 = G 1 = 0, G 3 = G 4 = 1) равна 1 только в случае, когда x 1 = x 2 = 0, x 3 = x 4 = 1.

Теорема 1 Всякая булева функция f(x 1 ,x 2 ,…,x n) должна быть представлена в следующей форме:

где 1 ≤ k ≤ n, в дизъюнкции берется по всœем наборам значений переменных.

Это представление носит название разложения функции по переменным . К примеру, при n = 4, k = 2 разложение (3.1) имеет вид:

.

Докажем справедливость разложения (3.1). Для этого возьмем произвольный набор значений переменных . Покажем, что левая и правая части соотношения (3.1) принимают при нем одно и то же значение. Действительно, так как x G = 1 тогда и только тогда, когда x = G, то среди 2 К конъюнкции правой части (3.1) в единицу обращается только одна, в которой . Все остальные конъюнкции равны нулю.

По этой причине . В качестве следствия из разложения (3.1) получаем следующие два специальных разложения.

Разложение по переменной x n:

В случае если булева функция не есть константа 0, то справедливо разложение

Разложение по всœем переменным:

, (3.3)

где дизъюнкция берется по всœем наборам , при которых значение функции равно 1.

Разложение (3.3) принято называть совершенной дизъюнктивной нормальной формой (сокращенная запись СДНФ) функции.

Разложение (3.3) дает способ построения СДНФ. Для этого в таблице истинности отмечаем всœе строки , в которых . Для каждой такой строки образуем конъюнкцию и затем всœе полученные конъюнкции соединяем знаком дизъюнкции.

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, существует взаимно однозначное соответствие между таблицей истинности функции и ее СДНФ. А это значит, что СДНФ для булевой функции единственна.

Единая булева функция, не имеющая СДНФ, есть константа 0.

Пример 1 Найти совершенную дизъюнктивную форму для функции .

Составим таблицу истинности для данной функции:

Отсюда получаем: = = .

Важную роль в алгебре логики играет следующее разложение булевых функций.

Теорема 2 Всякая булева функция должна быть представлена в следующей форме:

где 1≤k≤n, а конъюнкция берется по всœем 2 k наборам значений переменных.

Действительно, пусть – произвольный набор значений переменных. Покажем, что левая и правая части соотношения (3.4) принимают при нем одно и то же значение. Так как только тогда, когда , то среди 2 k дизъюнкций правой части (3.4) в 0 обращается только одна, в которой . Все остальные дизъюнкции равны 1.

По этой причине = = .

Непосредственно из разложения (3.4) следуют разложения булевых функций:

Последнее разложение носит название совершенной конъюнктивной нормальной формы (СКНФ). Разложение (3.6) дает способ построения СКНФ. Для этого в таблице истинности отмечаем всœе строки , в которых . Для каждой такой строки образуем дизъюнкцию и затем всœе полученные конъюнкции соединяем знаком конъюнкции. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, существует взаимно однозначное соответствие между таблицей истинности функции и ее СКНФ. А это значит, что СКНФ для булевой функции единственна.

Единственная булева функция, не имеющая СКНФ, есть константа 1.

Пример 2 Найти совершенную конъюнктивную нормальную форму для функции .

Составим таблицу истинности для данной функции.

Отсюда получаем СКНФ

Формула вида (краткая запись ), где – конъюнкции принято называть дизъюнктивной нормальной формой (ДНФ).

В силу приведенного определœения ДНФ будут, к примеру, выражения: , .

Как отмечено в пункте 2.2, всœе логические операции можно свести к трем: конъюнкции, дизъюнкции и отрицания. Причем, ввиду закона де Моргана, знак отрицания можно предполагать отнесенным только к переменным.

Теперь, используя дистрибутивный закон, раскрываем скобки и получаем дизъюнктивную нормальную форму. Итак, справедлива следующая теорема.

Теорема 3 Для любой формулы алгебры логики существует равносильная ей дизъюнктивная нормальная форма.

Доказательство данной теоремы дает способ построения дизъюнктивной нормальной формы для любой формулы алгебры логики.

Пример 3 Найти дизъюнктивную нормальную форму для следующей формулы: .

Исключая знак по закону и применяя законы де Моргана и двойного отрицания, получаем:

Затем, применяя закон дистрибутивности, раскроем скобки

Последнее выражение есть дизъюнктивная нормальная форма.

Форма вида (краткая запись ), где - дизъюнкции принято называть конъюнктивной нормальной формой (КНФ).

Такими являются, к примеру, выражения:

, .

Как показано выше, для любой формулы алгебры логики существует равносильная ей дизъюнктивная форма. Используя дистрибутивный закон , из данной ДНФ легко получить КНФ.

Итак, справедлива следующая теорема.

Теорема 4 Для любой формулы алгебры логики существует равносильная ей конъюнктивная нормальная форма.

Доказательство данной теоремы дает способ построения конъюнктивной нормальной формы для любой формулы алгебры логики.

Пример 4 Найти дизъюнктивную и конъюнктивную нормальные формы для следующей формулы: .

Используя закон , исключаем знак . Получаем формулу .

Используя закон де Моргана, получаем формулу . Раскрывая скобки, получаем дизъюнктивную нормальную форму

.

Чтобы получить конъюнктивную нормальную форму, применим к формуле дистрибутивный закон, получаем:

Последнее выражение является конъюнктивной нормальной формой. Так как и , то полученная КНФ равносильна следующей КНФ:

Среди всœех нормальных формул данной формулы выделим совершенную нормальную форму как дизъюнктивную, так и конъюнктивную. Учитывая разложение (3), нетрудно заметить, что совершенная дизъюнктивная нормальная форма формулы алгебры логики, содержащей ровно n различных переменных, есть ее дизъюнктивная нормальная форма, в которой:

1) всœе конъюнкции попарно различны;

2) каждая конъюнкция содержит ровно n переменных;

3) в каждой конъюнкции встречаются всœе n переменных.

На примере 1 мы рассмотрели один из способов построения СДНФ, основанный на составлении таблицы истинности. Следующий способ построения СДНФ основан на применении законов алгебры логики.

Пример 5 Найти совершенную дизъюнктивную форму формулы .

Используя, что , получаем . Ввиду законов де Моргана и двойного отрицания имеем получили дизъюнктивную нормальную форму . Данная ДНФ равносильна формуле .

Раскрывая скобки, получаем: .

Используя закон идемпотентности, получаем требуемую СДНФ:

Учитывая разложение (3.6), нетрудно заметить, что совершенная конъюнктивная нормальная форма формулы алгебры логики, содержащей ровно n различных переменных, есть ее конъюнктивная нормальная форма, в которой:

1) всœе дизъюнкции попарно различны;

2) каждая дизъюнкция содержит ровно n членов;тождественно истинной , в случае если она при всœех значениях входящих в нее переменных принимает значение истинно .

Примерами тождественно истинных формул являются формулы:

тождественно ложной , в случае если она при всœех значениях, входящих в нее переменных, принимает значение ложь.

Примерами тождественно ложных формул являются формулы:

Формула алгебры логики принято называть выполнимой , в случае если она при некоторых значениях, входящих в нее переменных, принимает значение истинно.

Примерами выполнимых формул являются следующие формулы:

В алгебре логики можно поставить следующую задачу: указать способ (алгоритм), позволяющий для каждой формулы алгебры логики узнать, является она тождественно истинной или нет. Поставленная задача носит название проблемы разрешения.

Рассмотрим следующие два способа решения этой задачи.

Способ 1 (табличный) Для того, чтобы определить, является ли данная формула тождественно истинной или нет, достаточно составить ее таблицу истинности.

При этом данный способ, хотя и дает принципиальное решение проблемы разрешимости, он довольно громоздкий.

Способ 2 основан на приведении формул к нормальной форме.

Теорема 4 Формула алгебры логики тогда и только тогда является тождественно истинной, когда каждая дизъюнкция в ее конъюнктивной нормальной форме содержит некоторую переменную вместе с ее отрицанием.

Действительно, в случае если каждая дизъюнкция в конъюнктивной нормальной форме содержит переменную вместе с ее отрицанием, то всœе дизъюнкции равны 1, ибо , . Отсюда следует, что КНФ является тождественно истинной.

Пусть теперь данная формула является тождественно истинной, и пусть есть некоторая дизъюнкция в КНФ данной формулы. Допустим, что данная дизъюнкция не содержит переменной вместе с ее отрицанием. В таком случае мы можем каждой переменной, не стоящей под знаком отрицания, дать значение 0, а каждой переменной, стоящей под знаком отрицания – значение 1. После указанной подстановки всœе дизъюнкции станут равны 0, следовательно, формула не является тождественно истинной. Получили противоречие.

Пример 7 Выяснить, будет ли тождественно истинной формула

.

Используя, что , получаем .

Применяя закон дистрибутивности, получаем КНФ:

Так как каждая дизъюнкция содержит некоторую переменную вместе с ее отрицанием, то формула тождественно истинна.

Аналогично предыдущей теореме доказывается теорема:

Теорема 5 Формула алгебры логики тогда и только тогда является тождественно ложной, когда каждая конъюнкция в ее дизъюнктивной форме содержит некоторую переменную вместе с ее отрицанием .

Разложение булевых функций по переменным. - понятие и виды. Классификация и особенности категории "Разложение булевых функций по переменным." 2017, 2018.

Рассмотрим вопрос представления n -местной булевой функции f (x 1 ,x 2 ,…,x n ) какой-нибудь формулой алгебры высказываний.

Введем обозначение, где - параметр, равный 0 или 1.

Очевидно, что

Теорема 1.1. Каждую функцию алгебры логики f (x 1 , x 2 ,…, x n ) при любом m (1 £ m £ n ) можно представить в следующей форме:

где дизъюнкция берется по всевозможным наборам значений переменных .

Доказательство . Рассмотрим произвольный набор значений всех переменных данной функции. Покажем, что на этом наборе левая и правая часть формулы (1) принимают одно и то же значение. Левая часть равна , правая

т.к. , если только , если же , то и соответствующее логическое слагаемое можно отбросить.

Замечание . Указанное в теореме представление функции называется разложением функции по m переменным .

Следствие 1 (разложение по одной переменной).

В этом случае функции и называются компонентами разложения .

Следствие 2 (разложение по всем переменным).

Очевидно, что если , то

Итак, если функцияf (x 1 ,x 2 ,…,x n )не является тождественно ложной функцией, то она может быть выражена равносильной формулой, представляющей, собой логическую сумму различных произведений вида , причем такое представление единственно.

Вид формулы (2) может быть значительно упрощен. Известно, что всякая формула алгебры логики может быть путем равносильных преобразований сведена к формуле, содержащей только конъюнкцию и отрицание или дизъюнкцию и отрицание. В результате проведения равносильных преобразований могут получиться несколько формул, однако только одна из них будет обладать следующими свойствами:

1. Каждое логическое слагаемое содержит все переменные, входящие в формулу f (x 1 ,x 2 ,…,x n ).

2. Ни одно логическое слагаемое не содержит одновременно переменную и ее отрицание.

3. Все логические слагаемые в формуле различны.

4. Ни одно логическое слагаемое не содержит одну и ту же переменную дважды.

Эти четыре свойства называются свойствами совершенства (или свойствами С).

Если f (x 1 ,x 2 ,…,x n ) задана таблицей истинности, то соответствующая формула алгебры логики восстанавливается довольно просто. Для всех значений аргументов x 1 ,x 2 ,…,x n , при которых f принимает значение 1, нужно записать конъюнкцию элементарных переменных высказываний, взяв за член конъюнкции x i , если x i =1, и , если x i =0. Дизъюнкция всех записанных конъюнкций и будет необходимой формулой. О значениях f 0 можно не беспокоиться, т.к. соответствующее слагаемое в формуле будет равно 0 и его можно отбросить в силу равносильности f Ú 0 ≡ f .

Например, пусть функция f (x , y , z ) имеет следующую таблицу истинности:

x

y

z

f (x , y , z )

3.1 Разложение булевых функций по переменным

3.2 Алгебра Жегалкина

Выше мы показали, что любая булева функция может быть задана с помощью таблицы истинности. В настоящем разделе излагается переход от табличного перехода задания функции к аналитическому.

3.1 Разложение булевых функций по переменным.

Пусть G– параметр, равный 0 или 1. Введем обозначение:

Проверкой легко установить, что x G = 1, тогда и только тогда, когдаx =G. Отсюда следует, конъюнкция
равна 1 (здесьGравен 0 или 1) тогда и только тогда, когда
. Например, конъюнкция
(в которойG 2 =G 1 = 0,G 3 =G 4 = 1) равна 1 только в случае, когдаx 1 =x 2 = 0,x 3 =x 4 = 1.

Теорема 1 Всякая булева функция f (x 1 , x 2 ,…, x n ) может быть представлена в следующей форме:

где 1 ≤ k n , в дизъюнкции берется по всем наборам значений переменных.

Это представление носит название разложения функции по переменным
. Например, приn= 4,k= 2 разложение (3.1) имеет вид:

.

Докажем справедливость разложения (3.1). Для этого возьмем произвольный набор значений переменных
. Покажем, что левая и правая части соотношения (3.1) принимают при нем одно и то же значение. Действительно, так какx G = 1 тогда и только тогда, когдаx =G, то среди 2 К конъюнкции
правой части (3.1) в единицу обращается только одна, в которой
. Все остальные конъюнкции
равны нулю.

Поэтому . В качестве следствия из разложения (3.1) получаем следующие два специальных разложения.

Разложение по переменной x n :

Если булева функция не есть константа 0, то справедливо разложение

Разложение по всем переменным:

,
(3.3)

где дизъюнкция берется по всем наборам
, при которых значение функции
равно 1.

Разложение (3.3) называется совершенной дизъюнктивной нормальной формой (сокращенная запись СДНФ) функции.

Разложение (3.3) дает способ построения СДНФ. Для этого в таблице истинности отмечаем все строки
, в которых
. Для каждой такой строки образуем конъюнкцию
и затем все полученные конъюнкции соединяем знаком дизъюнкции.

Таким образом, существует взаимно однозначное соответствие между таблицей истинности функции
и ее СДНФ. А это значит, что СДНФ для булевой функции единственна.

Единая булева функция, не имеющая СДНФ, есть константа 0.

Пример 1 Найти совершенную дизъюнктивную форму для функции
.

Составим таблицу истинности для данной функции:

Отсюда получаем:
==.

Важную роль в алгебре логики играет следующее разложение булевых функций.

Теорема 2 Всякая булева функция
может быть представлена в следующей форме:

где 1≤k≤n, а конъюнкция беретсяпо всем 2 k наборам значений переменных.

Действительно, пусть
– произвольный набор значений переменных. Покажем, что левая и правая части соотношения (3.4) принимают при нем одно и то же значение. Так как
только тогда, когда
, то среди 2 k дизъюнкций
правой части (3.4) в 0 обращается только одна, в которой
. Все остальные дизъюнкции равны 1.

Поэтому
==
.

Непосредственно из разложения (3.4) следуют разложения булевых функций:

Последнее разложение носит название совершенной конъюнктивной нормальной формы (СКНФ). Разложение (3.6) дает способ построения СКНФ. Для этого в таблице истинности отмечаем все строки
, в которых. Для каждой такой строки образуем дизъюнкцию
и затем все полученные конъюнкции соединяем знаком конъюнкции. Таким образом, существует взаимно однозначное соответствие между таблицей истинности функции
и ее СКНФ. А это значит, что СКНФ для булевой функции единственна.

Единственная булева функция, не имеющая СКНФ, есть константа 1.

Пример 2 Найти совершенную конъюнктивную нормальную форму для функции
.

Составим таблицу истинности для данной функции.

Отсюда получаем СКНФ

Формула вида (краткая запись
), где
– конъюнкции
называетсядизъюнктивной нормальной формой (ДНФ).

В силу приведенного определения ДНФ будут, например, выражения:
,
.

Как отмечено в пункте 2.2, все логические операции можно свести к трем: конъюнкции, дизъюнкции и отрицания. Причем, ввиду закона де Моргана, знак отрицания можно предполагать отнесенным только к переменным.

Теперь, используя дистрибутивный закон, раскрываем скобки и получаем дизъюнктивную нормальную форму. Итак, справедлива следующая теорема.

Теорема 3 Для любой формулы алгебры логики существует равносильная ей дизъюнктивная нормальная форма.

Доказательство данной теоремы дает способ построения дизъюнктивной нормальной формы для любой формулы алгебры логики.

Пример 3 Найти дизъюнктивную нормальную форму для следующей формулы:
.

Исключая знак
по закону
и применяя законы де Моргана и двойного отрицания, получаем:

Затем, применяя закон дистрибутивности, раскроем скобки

Последнее выражение есть дизъюнктивная нормальная форма.

Форма вида
(краткая запись), где
- дизъюнкции
называетсяконъюнктивной нормальной формой (КНФ).

Такими являются, например, выражения:

,
.

Как показано выше, для любой формулы алгебры логики существует равносильная ей дизъюнктивная форма. Используя дистрибутивный закон , из данной ДНФ легко получить КНФ.

Итак, справедлива следующая теорема.

Теорема 4 Для любой формулы алгебры логики существует равносильная ей конъюнктивная нормальная форма.

Доказательство данной теоремы дает способ построения конъюнктивной нормальной формы для любой формулы алгебры логики.

Пример 4 Найти дизъюнктивную и конъюнктивную нормальные формы для следующей формулы:
.

Используя закон
, исключаем знак
. Получаем формулу
.

Используя закон де Моргана, получаем формулу
. Раскрывая скобки, получаем дизъюнктивную нормальную форму

.

Чтобы получить конъюнктивную нормальную форму, применим к формуле
дистрибутивный закон, получаем:

Последнее выражение является конъюнктивной нормальной формой. Так как
и
, то полученная КНФ равносильна следующей КНФ:

Среди всех нормальных формул данной формулы выделим совершенную нормальную форму как дизъюнктивную, так и конъюнктивную. Учитывая разложение (3), нетрудно заметить, что совершенная дизъюнктивная нормальная форма формулы алгебры логики, содержащей ровно nразличных переменных, есть ее дизъюнктивная нормальная форма, в которой:

1) все конъюнкции попарно различны;

2) каждая конъюнкция содержит ровно nпеременных;

3) в каждой конъюнкции встречаются все nпеременных.

На примере 1 мы рассмотрели один из способов построения СДНФ, основанный на составлении таблицы истинности. Следующий способ построения СДНФ основан на применении законов алгебры логики.

Пример 5 Найти совершенную дизъюнктивную форму формулы
.

Используя, что
, получаем
. Ввиду законов де Моргана и двойного отрицания имеем получили дизъюнктивную нормальную форму
. Данная ДНФ равносильна формуле.

Раскрывая скобки, получаем: .

Используя закон идемпотентности, получаем требуемую СДНФ:

Учитывая разложение (3.6), нетрудно заметить, что совершенная конъюнктивная нормальная форма формулы алгебры логики, содержащей ровно n различных переменных, есть ее конъюнктивная нормальная форма, в которой:

1) все дизъюнкции попарно различны;

2) каждая дизъюнкция содержит ровно nчленов;

3) в каждой дизъюнкции встречаются все nпеременных.

На примере 2 мы рассмотрели один из способов построения СКНФ, основанный на составлении таблицы истинности. Следующий способ построения СКНФ основан на применении законов алгебры логики.

Пример 6 Найти совершенную конъюнктивную нормальную форму формулы
.

Используя,
, получаем
.

Данная формула является конъюнктивной нормальной формой. Она равносильна формуле .

Используя закон дистрибутивности, получаем:

Применяя закон идемпотентности, получаем требуемую совершенную конъюнктивную нормальную форму

тождественно истинной , если она при всех значениях входящих в нее переменных принимает значениеистинно .

Примерами тождественно истинных формул являются формулы:

Формула алгебры логики называется тождественно ложной , если она при всех значениях, входящих в нее переменных, принимает значениеложь.

Примерами тождественно ложных формул являются формулы:

,

Формула алгебры логики называется выполнимой , если она при некоторых значениях, входящих в нее переменных, принимает значениеистинно.

Примерами выполнимых формул являются следующие формулы:

,
.

В алгебре логики можно поставить следующую задачу: указать способ (алгоритм), позволяющий для каждой формулы алгебры логики выяснить, является она тождественно истинной или нет. Поставленная задача носит название проблемы разрешения.

Рассмотрим следующие два способа решения этой задачи.

Способ 1 (табличный) Для того, чтобы определить, является ли данная формула тождественно истинной или нет, достаточно составить ее таблицу истинности.

Однако данный способ, хотя и дает принципиальное решение проблемы разрешимости, он довольно громоздкий.

Способ 2 основан на приведении формул к нормальной форме.

Теорема 4 Формула алгебры логики тогда и только тогда является тождественно истинной, когда каждая дизъюнкция в ее конъюнктивной нормальной форме содержит некоторую переменную вместе с ее отрицанием.

Действительно, если каждая дизъюнкция в конъюнктивной нормальной форме содержит переменную вместе с ее отрицанием, то все дизъюнкции равны 1, ибо
,
. Отсюда следует, что КНФ является тождественно истинной.

Пусть теперь данная формула является тождественно истинной, и пусть
есть некоторая дизъюнкция в КНФ данной формулы. Допустим, что данная дизъюнкция не содержит переменной вместе с ее отрицанием. В таком случае мы можем каждой переменной, не стоящей под знаком отрицания, дать значение 0, а каждой переменной, стоящей под знаком отрицания – значение 1. После указанной подстановки все дизъюнкции станут равны 0, следовательно, формула не является тождественно истинной. Получили противоречие.

Пример 7 Выяснить, будет ли тождественно истинной формула

.

Используя, что
, получаем
.

Применяя закон дистрибутивности, получаем КНФ:

Так как каждая дизъюнкция содержит некоторую переменную вместе с ее отрицанием, то формула тождественно истинна.

Аналогично предыдущей теореме доказывается теорема:

Теорема 5 Формула алгебры логики тогда и только тогда является тождественно ложной, когда каждая конъюнкция в ее дизъюнктивной форме содержит некоторую переменную вместе с ее отрицанием .

Пусть G - параметр, равный 0 или 1.

Введем обозначение:

Проверкой легко установить, что x G = 1, тогда и только тогда, когда
x = G. Отсюда следует, конъюнкция равна 1 (здесь G равен 0 или 1) тогда и только тогда, когда . Например, конъюнкция (в которой G 2 = G 1 = 0, G 3 = G 4 = 1) равна 1 только в случае, когда x 1 = x 2 = 0, x 3 = x 4 = 1.

Теорема 1. Всякая булева функция f(x 1 , x 2 , x n) может быть представлена в следующей форме:

где 1 ≤ k ≤ n, в дизъюнкции берется по всем наборам значений переменных.

Это представление носит название разложения функции по переменным . Например, при n = 4, k = 2 разложение (3.1) имеет вид:

.

Докажем справедливость разложения (3.1). Для этого возьмем произвольный набор значений переменных . Покажем, что левая и правая части соотношения (3.1) принимают при нем одно и то же значение. Действительно, так как x G = 1 тогда и только тогда, когда x = G, то среди 2 К конъюнкции правой части (3.1) в единицу обращается только одна, в которой . Все остальные конъюнкции равны нулю.

Поэтому . В качестве следствия из разложения (3.1) получаем следующие два специальных разложения.

Разложение по переменной x n:

Если булева функция не есть константа 0, то справедливо разложение

Разложение по всем переменным:

, (3.3)

где дизъюнкция берется по всем наборам , при которых значение функции равно 1.

Разложение (3.3) называется совершенной дизъюнктивной нормальной формой (сокращенная запись СДНФ) функции.

Разложение (3.3) дает способ построения СДНФ. Для этого в таблице истинности отмечаем все строки , в которых . Для каждой такой строки образуем конъюнкцию и затем все полученные конъюнкции соединяем знаком дизъюнкции.

Таким образом, существует взаимно однозначное соответствие между таблицей истинности функции и ее СДНФ. А это значит, что СДНФ для булевой функции единственна.

Единая булева функция, не имеющая СДНФ, есть константа 0.

Пример 1. Найти совершенную дизъюнктивную форму для функции .

Составим таблицу истинности для данной функции:

Отсюда получаем: = = .

Важную роль в алгебре логики играет следующее разложение булевых функций.

Теорема 2. Всякая булева функция может быть представлена в следующей форме:

где 1≤k≤n, а конъюнкция берется по всем 2 k наборам значений переменных.


Действительно, пусть - произвольный набор значений переменных. Покажем, что левая и правая части соотношения (3.4) принимают при нем одно и то же значение. Так как только тогда, когда , то среди 2 k дизъюнкций правой части (3.4) в 0 обращается только одна, в которой . Все остальные дизъюнкции равны 1.

Поэтому = = .

Непосредственно из разложения (3.4) следуют разложения булевых функций:

Последнее разложение носит название совершенной конъюнктивной нормальной формы (СКНФ). Разложение (3.6) дает способ построения СКНФ. Для этого в таблице истинности отмечаем все строки , в которых . Для каждой такой строки образуем дизъюнкцию и затем все полученные конъюнкции соединяем знаком конъюнкции. Таким образом, существует взаимно однозначное соответствие между таблицей истинности функции и ее СКНФ. А это значит, что СКНФ для булевой функции единственна.

Единственная булева функция, не имеющая СКНФ, есть константа 1.

Пример 2. Найти совершенную конъюнктивную нормальную форму для функции .

Составим таблицу истинности для данной функции.

Отсюда получаем СКНФ

Формула вида (краткая запись ), где - конъюнкции называется дизъюнктивной нормальной формой (ДНФ).

В силу приведенного определения ДНФ будут, например, выражения: , .

Как отмечено в пункте 2.2, все логические операции можно свести к трем: конъюнкции, дизъюнкции и отрицания. Причем, ввиду закона
де Моргана, знак отрицания можно предполагать отнесенным только к переменным.

Теперь, используя дистрибутивный закон, раскрываем скобки и получаем дизъюнктивную нормальную форму. Итак, справедлива следующая теорема.

Теорема 3. Для любой формулы алгебры логики существует равносильная ей дизъюнктивная нормальная форма.

Доказательство данной теоремы дает способ построения дизъюнктивной нормальной формы для любой формулы алгебры логики.

Пример 3. Найти дизъюнктивную нормальную форму для следующей формулы: .

Исключая знак по закону и применяя законы де Моргана и двойного отрицания, получаем:

Затем, применяя закон дистрибутивности, раскроем скобки

Последнее выражение есть дизъюнктивная нормальная форма.

Форма вида (краткая запись ), где - дизъюнкции называется конъюнктивной нормальной формой (КНФ).

Такими являются, например, выражения:

, .

Как показано выше, для любой формулы алгебры логики существует равносильная ей дизъюнктивная форма. Используя дистрибутивный закон , из данной ДНФ легко получить КНФ.

Итак, справедлива следующая теорема.

Теорема 4. Для любой формулы алгебры логики существует равносильная ей конъюнктивная нормальная форма.

Доказательство данной теоремы дает способ построения конъюнктивной нормальной формы для любой формулы алгебры логики.

Пример 4. Найти дизъюнктивную и конъюнктивную нормальные формы для следующей формулы: .

Используя закон , исключаем знак . Получаем формулу .

Используя закон де Моргана, получаем формулу . Раскрывая скобки, получаем дизъюнктивную нормальную форму

.

Чтобы получить конъюнктивную нормальную форму, применим к формуле дистрибутивный закон, получаем:

Последнее выражение является конъюнктивной нормальной формой. Так как и , то полученная КНФ равносильна следующей КНФ:

Среди всех нормальных формул данной формулы выделим совершенную нормальную форму как дизъюнктивную, так и конъюнктивную. Учитывая разложение (3), нетрудно заметить, что совершенная дизъюнктивная нормальная форма формулы алгебры логики, содержащей ровно n различных переменных, есть ее дизъюнктивная нормальная форма, в которой:

1) все конъюнкции попарно различны;

2) каждая конъюнкция содержит ровно n переменных;

3) в каждой конъюнкции встречаются все n переменных.

На примере 1 мы рассмотрели один из способов построения СДНФ, основанный на составлении таблицы истинности. Следующий способ построения СДНФ основан на применении законов алгебры логики.

Пример 5. Найти совершенную дизъюнктивную форму формулы .

Используя, что , получаем . Ввиду законов
де Моргана и двойного отрицания имеем получили дизъюнктивную нормальную форму . Данная ДНФ равносильна формуле .

Раскрывая скобки, получаем: .

Используя закон идемпотентности, получаем требуемую СДНФ:

Учитывая разложение (3.6), нетрудно заметить, что совершенная конъюнктивная нормальная форма формулы алгебры логики, содержащей ровно n различных переменных, есть ее конъюнктивная нормальная форма, в которой:

1) все дизъюнкции попарно различны;

2) каждая дизъюнкция содержит ровно n членов;

3) в каждой дизъюнкции встречаются все n переменных., если она при всех значениях входящих в нее переменных принимает значение истинно .

Примерами тождественно истинных формул являются формулы:

тождественно ложной , если она при всех значениях, входящих в нее переменных, принимает значение ложь.

Примерами тождественно ложных формул являются формулы:

Формула алгебры логики называется выполнимой , если она при некоторых значениях, входящих в нее переменных, принимает значение истинно.

Примерами выполнимых формул являются следующие формулы:

В алгебре логики можно поставить следующую задачу: указать способ (алгоритм), позволяющий для каждой формулы алгебры логики выяснить, является она тождественно истинной или нет. Поставленная задача носит название проблемы разрешения.

Рассмотрим следующие два способа решения этой задачи.

Способ 1. (табличный) Для того, чтобы определить, является ли данная формула тождественно истинной или нет, достаточно составить ее таблицу истинности.

Однако данный способ, хотя и дает принципиальное решение проблемы разрешимости, он довольно громоздкий.

Способ 2. основан на приведении формул к нормальной форме.

Теорема 4. Формула алгебры логики тогда и только тогда является тождественно истинной, когда каждая дизъюнкция в ее конъюнктивной нормальной форме содержит некоторую переменную вместе с ее отрицанием.

Действительно, если каждая дизъюнкция в конъюнктивной нормальной форме содержит переменную вместе с ее отрицанием, то все дизъюнкции равны 1, ибо , . Отсюда следует, что КНФ является тождественно истинной.

Пусть теперь данная формула является тождественно истинной, и пусть есть некоторая дизъюнкция в КНФ данной формулы. Допустим, что данная дизъюнкция не содержит переменной вместе с ее отрицанием. В таком случае мы можем каждой переменной, не стоящей под знаком отрицания, дать значение 0, а каждой переменной, стоящей под знаком отрицания - значение 1. После указанной подстановки все дизъюнкции станут равны 0, следовательно, формула не является тождественно истинной. Получили противоречие.

Пример 7. Выяснить, будет ли тождественно истинной формула

Используя, что , получаем .

Применяя закон дистрибутивности, получаем КНФ:

Так как каждая дизъюнкция содержит некоторую переменную вместе с ее отрицанием, то формула тождественно истинна.

Аналогично предыдущей теореме доказывается теорема:

Теорема 5. Формула алгебры логики тогда и только тогда является тождественно ложной, когда каждая конъюнкция в ее дизъюнктивной форме содержит некоторую переменную вместе с ее отрицанием .

Разложение Шеннона Рассмотрим разложение булевой функции f (x 1, x 2, . . . , xn) по переменной xi. Разложение Шеннона: f (x 1, x 2, . . . , xn)= xi f(x 1, . . . , xi 1, 1, xi+1, . . . , xn) xi f(x 1, . . . , xi 1, 0, xi+1, . . . , xn). Доказательство (не умоляя общности, для i =1). Если x 1 = 0, то f(0, x 2, . . . , xn) = 0 f (1, x 2, . . . , xn) 1 f(0, x 2, . . . , xn) = f (0, x 2, . . . , xn). Если x 1 = 1, то f(1, x 2, . . . , xn) = 1 f(1, x 2, . . . , xn) 0 f(1, x 2, . . . , xn) = f(0, x 2, . . . , xn). ЧТД Пример. Булеву функцию f (x, y, z) = x y / y z , разложим по переменной z: f (x, y, z) = z(x y / y 1) z (x y / y 0)= [по свойствам 0 и 1] = z z (x y / y). Сомножитель f (x 1, . . . , xi -1, 1, xi+1, . . . , xn) в формуле Шеннона называется коэффициентом разложения функции f (x 1, x 2, . . . , xn) по переменной xi при xi, а сомножитель f (x 1, . . . , xi -1, 0, xi+1, . . . , xn) - коэффициентом разложения функции f (x 1, x 2, . . . , xn) по xi при xi. Пример. f (x, y, z) = x y / y = y (x 1 / 0) y (x 0 / 1). x 1 / 0 - коэффициент разложения функции f (x, y, z) по y при y ; x 0 / 1 - коэффициент разложения функции f (x, y, z) по y при y.

Разложение функции по k переменным Доказательство. Подставим в левую и правую части равенства произвольный набор a 1 a 2. . . an: Упростим правую часть, рассуждая следующим образом. Нетрудно проверить, что 1, если и только если ai = 0 = 1, 11 = 1, но 0 1 = 0 и 10 = 0), ci (в самом деле: 0 поэтому конъюнкция равна единице лишь в единственном случае, когда наборы a 1 a 2. . . ak и с1 с2. . . сk совпадают. А это значит, что она не обращает в ноль лишь одно слагаемое правой части - то, для которого a 1 a 2. . . ak = с1 с2. . . сk и в котором сама обращается в единицу. Подставив в ставшееся слагаемое a 1 a 2. . . ak вместо с1 с2. . . сk , получим

Совершенная дизъюнктивная нормальная форма (Сов. ДНФ) Применив формулу разложения булевой функции f (x 1, x 2, . . . , xn) по k переменным при k = n, получим: Поскольку коэффициентами разложения f (c 1, c 2, . . . , cn) в этой формуле являются значения функции f (x 1, x 2, . . . , xn) на всевозможных наборах c 1 c 2. . . cn, то возможны два случая: если набор c 1 c 2. . . cn M 0 (f), то f (c 1, c 2, . . . , cn) = 0 и поэтому обращается в 0 соответствующее слагаемое правой части; если набор c 1 c 2. . . cn M 1 (f), то f(c 1, c 2, . . . , cn)=1 и слагаемое упрощается. В результате имеем: Совершенная дизъюнктивная нормальная форма булевой функции, или Сов. ДНФ, - это формула вида:

Утверждение о единственности Сов. ДНФ Любая булева функция, кроме константы 0, представима cовершенной дизъюнктивной нормальной формой, и она единственна для данной функции. Алгоритм построения Сов. ДНФ (по таблице истинности) вытекает из определения Сов. ДНФ и состоит в циклическом выполнении следующего шага: в векторе столбце значений функции выбирается очередная 1 и по набору значений аргументов этой строки формируется конъюнкция всех аргументов с соблюдением следующего правила: если i‑я компонента набора равна 0, то переменная xi входит в конъюнкцию в степени 0 (с инверсией), иначе в степени 1 (без инверсии); полученная конъюнкция добавляется в формулу как очередное слагаемое. Пример. Обратим внимание на тот факт, что нам впервые удалось от табличного способа задания функции перейти к формульному!

Утверждение о единственности Сов. КНФ Любая булева функция, кроме константы 1, представима cовершенной конъюнктивной нормальной формой, и она единственна для данной функции. Алгоритм построения Сов. КНФ по таблице истинности вытекает из определения Сов. КНФ и состоит в циклическом выполнении следующего шага: в векторе столбце значений функции выбирается очередной 0 и по набору значений аргументов этой строки формируется дизъюнкция всех аргументов с соблюдением следующего правила: если i‑я компонента набора равна 0, то переменная xi входит в дизъюнкцию в степени 1 (без инверсии), иначе в степени 0 (с инверсией); полученная дизъюнкция добавляется в Сов. КНФ как очередной сомножитель. Пример.

Элементарная конъюнкция и ДНФ Рассмотрим множество переменных x 1, x 2, . . . , xn. Элементарной конъюнкцией назовем конъюнкцию, в которую каждая переменная входит не более одного раза (с инверсией или без инверсии). Примеры. x 1 x 2 x 3 x 4, x 1 x 2 x 4 , x 3 - элементарные конъюнкции, x 1 x 2 x 4, x 1 x 3 - неэлементарные. В частности, 1 - это элементарная конъюнкция, не содержащая ни одной переменной. Число переменных, образующих элементарную конъюнкцию, назовем ее рангом. Пример. Ранг элементарной конъюнкции x 1 x 2 x 4 равен трем. Полной конъюнкцией назовем элементарную конъюнкцию, состоящую из всех переменных, т. е. конъюнкцию ранга n. Пример. При n = 4 конъюнкция x 1 x 2 x 3 x 4 - полная. Дизъюнктивной нормальной формой (ДНФ) назовем дизъюнкцию различных элементарных конъюнкций. Пример. x 1 x 2 x 4 x 1 x 2 x 3 x 4 x 3 - ДНФ. Очевидно, что совершенная ДНФ является частным случаем ДНФ. Длиной ДНФ назовем число конъюнкций в данной ДНФ. Рангом ДНФ назовем сумму рангов ее конъюнкций. Пример. Длина ДНФ из предыдущего примера равна трем, а ранг - восьми.